Toward automatic aftershock forecasting in Japan

T. Omi (The Univ. of Tokyo)
Y. Ogata (ISM)
K. Shiomi (NIED)
B. Enescu (Tsukuba Univ.)
K. Sawazaki (NIED)
K. Aihara (The Univ. of Tokyo)

@Statsei9
Forecasting aftershocks after the main shock

- Immediate forecast of aftershock is strongly required.
- We need to tailor a forecast model to each aftershock sequence.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Magnitude M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Chuetsu (M6.8)</td>
<td>6.8</td>
</tr>
<tr>
<td>2004</td>
<td>Niigata-ken Chuetsu (M6.8)</td>
<td>6.8</td>
</tr>
<tr>
<td>1943</td>
<td>Tottori (M7.2)</td>
<td>7.2</td>
</tr>
<tr>
<td>2008</td>
<td>Iwate Miyagi Nairiku (M7.2)</td>
<td>7.2</td>
</tr>
<tr>
<td>2008</td>
<td>Tohoku (M8.9)</td>
<td>8.9</td>
</tr>
<tr>
<td>2005</td>
<td>Fukuoka-ken Seihou-oki (M7.0)</td>
<td>7.0</td>
</tr>
<tr>
<td>2007</td>
<td>Niigata-ken Chuetsu-oki (M6.8)</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Cumulative number of aftershocks over time from the main shock.
Forecasting from an early aftershock data is difficult.

The data in the early period is highly deficient.

1995 Hyogo-Ken-Nambu earthquake of M 7.3

<table>
<thead>
<tr>
<th>Time from the main shock [day]</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>100.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Earthquakes
Seismic Network
missing
Real-time Aftershock forecasting

- Technical Issue: forecasting from “incomplete” and “short” data
 - Considering the incompleteness of early aftershock data
 - Considering the estimation uncertainty of a forecasting model

- Data Issue: forecasting from real-time data
 - Real-time data is more incomplete than fixed data
Real-time Aftershock forecasting

- Technical Issue: forecasting from “incomplete” and “short” data
 - Considering the incompleteness of early aftershock data
 - Considering the estimation uncertainty of a forecasting model

- Data Issue: forecasting from real-time data
 - Real-time data is more incomplete than fixed data
Detection rate of aftershocks

\[\Phi(M|\mu(t), \sigma) = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{M} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2} \right] dx \]

- Depending on the time and magnitude (Ogata & Katsura 1993)
- \(\mu(t) \): the time-varying magnitude with 50 \% detection rate
 (Bayesian smoothing, Omi et. al, 2013)

Chuetsu aftershock sequence

![Diagram of Chuetsu aftershock sequence with magnitude versus time plot and detection rate distribution](image)
Detection rate of aftershocks

\[\Phi(M | \mu(t), \sigma) = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{M} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2} \right] dx \]

- Depending on the time and magnitude (Ogata & Katsura 1993)

- \(\mu(t) \): the time-varying magnitude with 50% detection rate

(Bayesian smoothing, Omi et. al, 2013)

Chuetsu aftershock sequence

![Chuetsu aftershock sequence graph](image)
Detection rate of aftershocks

\[\Phi(M|\mu(t), \sigma) = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{M} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2} \right] \, dx \]

- Depending on the time and magnitude (Ogata & Katsura 1993)

- \(\mu(t) \): the time-varying magnitude with 50% detection rate

(Bayesian smoothing, Omi et. al, 2013)

Chuetsu aftershock sequence

![Graph showing the Chuetsu aftershock sequence with magnitude and time on the x-axis and detection rate on the y-axis. The graph includes a scatter plot of magnitude vs. time, a detection rate curve, and a magnitude distribution curve.](image)
Detection rate of aftershocks

\[\Phi(M | \mu(t), \sigma) = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{M} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2} \right] dx \]

- Depending on the time and magnitude (Ogata & Katsura 1993)
- \(\mu(t) \): the time-varying magnitude with 50% detection rate (Bayesian smoothing, Omi et al., 2013)

Chuetsu aftershock sequence
Detection rate of aftershocks

\[\Phi(M | \mu(t), \sigma) = \frac{1}{2\pi \sigma^2} \int_{-\infty}^{M} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2} \right] dx \]

- Depending on the time and magnitude (Ogata & Katsura 1993)

- \(\mu(t) \): the time-varying magnitude with 50 % detection rate

(Bayesian smoothing, Omi et. al, 2013)

Chuetsu aftershock sequence

\(\mu \mu \mu \)

Detection Rate

Magnitude Distribution

(G-R law)

(Detection Rate)
Immediate forecast with 2011 Tohoku sequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3 h</td>
<td>0 - 6 h</td>
<td>0 - 12 h</td>
<td>0 - 24 h</td>
<td></td>
</tr>
<tr>
<td>3 - 6 h</td>
<td>6 - 12 h</td>
<td>12 - 24 h</td>
<td>24 - 48 h</td>
<td></td>
</tr>
</tbody>
</table>

Omori-Utsu law

Bar: 95% interval

Omi et al., Scientific Reports (2013)
Real-time Aftershock forecasting

- Technical Issue: forecasting from “incomplete” and “short” data
 - Considering the incompleteness of early aftershock data
 - Considering the estimation uncertainty of a forecasting model

- Data Issue: forecasting from real-time data
 - Real-time data is more incomplete than fixed data
Plug-in and Bayesian forecasting

Plug-in Forecasting

1. **Learning Data**
 - \(P(\theta|Data) \)
 - Maximize

Bayesian Forecasting

1. **Sample (MCMC)**
 - \(\theta_1 \)
 - \(\theta_2 \)
 - \(\theta_N \)
 - The “probable” parameters

ETAS model

- Simulation
- Predictive distribution of the aftershock number

- The “best” parameter

- The “probable” parameters

Sequence_1
- **Sequence_2**
- **Sequence_N**

\[P(n|Data) \]

(Omi et al., JGR 2015)
Plug-in forecasting sometimes misses the observation

(Omi et al., JGR 2015)

Plug-in forecasting: use only the single ETAS-parameter value (MAP estimate).
Bayesian forecasting is better than Plug-in forecasting on average (Omi et al., JGR 2015)

Plug-in forecasting: use only the single ETAS-parameter value (MAP estimate).

Bayesian forecasting: combine the forecasts from the ETAS model with various probable parameter values: For each simulation, the parameter value is sampled from the posterior distribution (MCMC method).
Real-time Aftershock forecasting

- **Technical Issue:** forecasting from “incomplete” and “short” data
 - Considering the incompleteness of early aftershock data
 - Considering the estimation uncertainty of a forecasting model

- **Data Issue:** forecasting from real-time data
 - Real-time data is more incomplete than fixed data
Real-time and Fixed catalog

Seismic Networks
- NIED
- JMA
- Universities

JMA catalog
- Manually determined
- High quality
- Not available in real-time

Hi-net catalog
- Automatically determined
- Incomplete
- Available in real-time
Relative incompleteness of the real-time data to the fixed data (1)

- First day of the main shock

2000 W. Tottori eq. (M7.3)

2014 N. Nagano eq. (M6.7)
Relative incompleteness of the real-time data to the fixed data (2)

(a) 2000 W. Tottori eq. (M7.3)

(b) cumulative number

- 0–3[h]
- 3–6[h]
- 6–12[h]
- 12–24[h]
Forecast test

- Setting

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning period</td>
<td>0-3 [h]</td>
<td>0-6 [h]</td>
<td>6-12 [h]</td>
<td>12-24 [h]</td>
</tr>
<tr>
<td>Forecast period</td>
<td>3-6 [h]</td>
<td>6-12 [h]</td>
<td>12-24 [h]</td>
<td>24-48 [h]</td>
</tr>
</tbody>
</table>

- Use 7 inland aftershock sequences of the M7 class main shocks

- Forecast the number of aftershocks in each magnitude bin in the forecasting period.

- Prepare three forecasts by using the Omori-Utsu law; (1) forecast from the JMA catalog, (2) that from the Hi-net catalog, and (3) that using the generic model.

- Each forecasting is evaluated based on the data in the JMA catalog.
RESULTS

The cumulative number of earthquakes vs magnitude for 3-6 h and 24-48 h, showing different forecast models:

- Forecast from JMA catalog
- Forecast from Hi-net catalog
- Forecast from the generic model

Data points are from JMA and Hi-net catalogs.
RESULTS: Log-Likelihood score

- Relative to the score by the generic model

<table>
<thead>
<tr>
<th>Location</th>
<th>Forecast from Hi-net catalog</th>
<th>Forecast from JMA catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Tottori (M7.3)</td>
<td>25.8</td>
<td>25.9</td>
</tr>
<tr>
<td>Chuetsu (M6.8)</td>
<td>427.2</td>
<td>419.3</td>
</tr>
<tr>
<td>W-Off Fukuoka (M7.0)</td>
<td>63.4</td>
<td>72.4</td>
</tr>
<tr>
<td>Noto Penin. (M6.9)</td>
<td>237.4</td>
<td>255.3</td>
</tr>
<tr>
<td>Off Chuetsu (M6.8)</td>
<td>-4.2</td>
<td>16</td>
</tr>
<tr>
<td>Iwate-Miyagi (M7.2)</td>
<td>202.4</td>
<td>204.6</td>
</tr>
<tr>
<td>N Nagano (M6.7)</td>
<td>68.4</td>
<td>66.4</td>
</tr>
<tr>
<td>Average</td>
<td>145.8</td>
<td>151.4</td>
</tr>
</tbody>
</table>

- The two forecasts from the JMA catalog and the Hi-net catalog are similar, but the one from the JMA catalog is slightly better.

- These two forecasts are clearly better than the one from the generic model.
Summary: Real-time Aftershock forecasting

- **Technical Issue**
 - Considering the incompleteness of early aftershock data: Detection rate
 - Considering the estimation uncertainty of a forecasting model: Bayesian forecasting

- **Data Issue**
 - Real-time data can provide useful information for early aftershock forecasting.
References

T. Omi, Y. Ogata, Y. Hirata & K. Aihara,
“Forecasting large aftershocks within one day after the main shock”

T. Omi, Y. Ogata, Y. Hirata & K. Aihara,
“Estimating the ETAS model from an early aftershock sequence”

T. Omi, Y. Ogata, Y. Hirata & K. Aihara,
“Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches”
Thank you !!!